
SHOWFLOW:  A PRACTICAL INTERFACE

FOR GROUNDWATER MODELING

Approved:

_____________________________
Randall J. Charbeneau

_____________________________
Desmond F. Lawler

_____________________________
David R. Maidment



Copyright

© 1990 John Tauxe

DISCLAIMER OF WARRANTY

The ShowFlow software and documentation are
provided "as is" without guarantee or warranty of any kind,
expressed or implied.  Neither the author nor The University
of Texas at Austin will be liable for any damages, losses, or
claims consequent to use of this software or documentation.



Dedication

This work is dedicated to my parents:

 W. Newlon and Margaret H. Tauxe.



SHOWFLOW:  A PRACTICAL INTERFACE

FOR GROUNDWATER MODELING

by

JOHN DAVID TAUXE, B.A.

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ENGINEERING

THE UNIVERSITY OF TEXAS AT AUSTIN

December 1990



v

ACKNOWLEDGEMENTS

For infinite and enduring patience I wish to acknowledge my wife Katie, who was
supportive throughout my many hours at the computer.  I also wish to thank Dr.
Desmond Lawler and Dr. Randall Charbeneau of the Environmental and Water
Resources Engineering Division of the Department of Civil Engineering and Dr. Dale
Klein of the School of Engineering of the University of Texas at Austin, whose efforts in
locating financial support are greatly appreciated.  

For thoughtful review and commentary on this thesis I thank my readers, Dr.
David Maidment, Dr. Lawler, and Dr. Charbeneau.

Funding for this research has been provided by Union Carbide Corporation.  Part
of this work was performed under appointment to the Environmental Restoration and
Waste Management Fellowship program administered by Oak Ridge Associated
Universities for the U.S. Department of Energy.

submitted November 1990

This version was reformatted in 2004 by the author.



vi

ABSTRACT

SHOWFLOW:  A PRACTICAL INTERFACE

FOR GROUNDWATER MODELING

by

JOHN DAVID TAUXE, B.A.

Supervising Professor:  Randall J. Charbeneau

ShowFlow was created to provide a user-friendly, intuitive environment for
researchers and students who use computer modeling software.  What traditionally has
been a workplace available only to those familiar with command-line based computer
systems is now within reach of almost anyone interested in the subject of modeling.  In
the case of this edition of ShowFlow, the user can easily experiment with simulations
using the steady state gaussian plume groundwater pollutant transport model
SSGPLUME, though ShowFlow can be rewritten to provide a similar interface for any
computer model.  Included in this thesis is all the source code for both the ShowFlow
application for Microsoft® Windows™ and the SSGPLUME model, a User's Guide, and a
Developer's Guide for converting ShowFlow to run other model programs.
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ShowFlow:
A PRACTICAL INTERFACE

FOR GROUNDWATER MODELING

Chapter 1
Introduction

Groundwater by its nature is elusive, and its science has been challenged with
studying the isolated and indiscernible world of the subsurface.  Good data are sparse and
expensively obtained.  These limitations have led groundwater scientists and engineers to
adopt an approach to understanding based on models derived from fundamental
principles and verified by data, rather than on a strictly empirical review of existing data. 
With the continuing development of the physics of fluid flow and solute transport in
porous media, the modeling approach has become increasingly sophisticated and fruitful. 
However, even contemporary models are necessarily grounded in an idealized view of
reality, a result of idealized mathematics and incomplete data.  Increased understanding
of advanced mathematical techniques, including such entities as stochastic variables and
fractals, should provide a broader perspective for groundwater modeling.

Complex models require powerful computers, but some of today's most effective
models use the ubiquitous desktop computer as a simulation tool.  In many cases, the
known data and parameters on which modelers base their results do not warrant the use
of a computationally intensive simulation.  In simulation studies, the sensitivity of results
to the variations in parameters is of primary interest.  Such sensitivity studies provide the
researcher and student alike with valuable insights into the application of physical models
to natural systems, and help to strengthen one's intuition about the processes involved.

Many potentially useful models involve sophisticated mathematics but
rudimentary computer programming, resulting in a program as practically
unapproachable as it is theoretically sophisticated.  In part, this is because theoreticians
often write their own program code, focussing not so much on the user as on the results,
which are often no more than a cumbersome array of numbers.  Computer languages such
as FORTRAN are still in heavy use, languages which are not conducive to producing a
user-friendly interface.  

As groundwater science and engineering grow in interest and application, so does
the need for programs which can be used and understood by a larger audience.  Students,
policymakers, and researchers all can benefit from more productive groundwater
modeling software.  Recently, sophisticated graphical user interfaces (GUIs) have
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become easier to produce with the advent of software libraries which promote a standard
interface, such as that popularized by Apple Computer and its Macintosh series of
machines.  This style of GUI, developed by Xerox Palo Alto Research Center, has also
been adopted as the basis for the Microsoft Windows and Presentation Manager™
graphical environments, which operate under DOS and OS/2 operating systems, respect-
ively.

Research Objectives

The principal goal of this research has been to develop a productive interface for
the development and use of groundwater models.  The most desirable qualities of this
interface are that it should

•   provide an environment which is easy to use.
•   provide for unambiguous and error-free entry of model parameters.
•   have the ability to generate useful graphs of model output.
•   have the ability to transfer data and graphs to other media and programs.
•   be independent of the model program, so that the developer may modify the

model separately.
•   make efficient use of the computer's resources.
•   run on a widely-used platform.
•   provide adequate on-line help.
•   allow for quick comparison of simulation results.

This thesis presents the Windows application ShowFlow, designed generally for
computer models, and specifically for the groundwater contamination model
SSGPLUME, based on work by Smith and Charbeneau (1990).  ShowFlow makes
SSGPLUME easy and fun to use, with facilities to create and edit files of parameters read
by the model, execute the model program itself, and generate descriptive graphs based on
data produced by SSGPLUME.  The code for ShowFlow is designed in modules with
extensive commenting, including notes for converting the code to run other groundwater
models.  ShowFlow is intended to be a generalized, flexible modeling interface, and can
be applied to any computer model, written in any language, which generates output
appropriate for graphing.  In this way, ShowFlow is not limited to groundwater models,
but is applicable to modeling programs in any discipline.
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The Windows graphical environment and ShowFlow make the development,
analysis, and application of groundwater modeling programs a more productive and
efficient process.  Since the ShowFlow program is distinct from the model it is executing,
a modeler can make changes to a developing code and run it from ShowFlow to see the
effects.  Different versions of the model can be compared easily.  Once a model has been
developed, the process of examining sensitivities to changes in parameters or of
conducting simulations is greatly facilitated by ShowFlow, and its potential as a teaching
tool is far greater than that of conventional modeling interfaces.  
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Chapter 2  
Development of the SSGPLUME 
Groundwater Contaminant Transport Model

For the purposes of development of the ShowFlow interface, the Steady State
Gaussian Plume model SSGPLUME was chosen as the target model program.  Its
suitability for graphical output and its computational simplicity made it an ideal
candidate as ShowFlow's first model.  SSGPLUME uses straightforward algebraic
solutions of steady state transport equations, requiring little in computational resources,
yet is readily applicable to a variety of groundwater contamination scenarios.  Having
demonstrated its usefulness in running this particular model, ShowFlow can now be
modified to run other models as well, as described in Chapter 3: Programming
Development of ShowFlow.

The SSGPLUME computer model involves the solution of several algebraic
equations for a set of parameters provided in the input (parameter) file created by the
ShowFlow program.  The basis for SSGPLUME is a deterministic model which predicts
single-phase contaminant concentrations using a one-dimensional vertical soil-water
solute transport model coupled with a two-dimensional horizontal groundwater
contaminant fate and transport model (Huyakorn, et al., 1985).  The solution is a three-
dimensional surface representing the aqueous phase concentration of a contaminant
underlying a specified area — a concentration plume in the saturated zone, extended in
the direction of groundwater flow.  This surface is represented by a series of two-
dimensional graphs, calculated and written to file by SSGPLUME and displayed on the
screen by ShowFlow, as illustrated in Chapter 4: Application of ShowFlow to
SSGPLUME and Other Groundwater Models.

The contaminant transport model upon which SSGPLUME is based is presented
in Smith and Charbeneau (1990), and can be applied to problems of land treatment or
disposal of organic compounds.  The aqueous phase concentration of an organic
constituent is traced as leachate from a zone of contamination in the upper part of the
vadose zone, through adsorption and further degradation as it travels vertically through
the lower part of the vadose zone, and finally to distribution within the saturated zone
below.  Mixing of the constituent upon reaching groundwater produces a gaussian
concentration distribution beneath the source.  The contaminant further disperses as the
plume is transported horizontally in the flow direction.  Figure 1 illustrates this process.
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CL '
mL

kg KH % λv Lu Bw % If
(1)

kg ' 39.9 6.1%0.63U10

νg

Dg

&0.67

(2)

Bw ' θw % θg KH % θo Ko % ρb Ks (3)

 2.1  The Unsaturated Zone Model
The unsaturated zone model involves the fate and transport of a single organic

constituent subject to degradation, immobilization, volatilization, and leaching under
steady state conditions.  The aqueous phase concentration leaching from the upper zone,
CL, is given by

where
CL aqueous phase concentration leaching from upper zone (g/m3)
mL mass release (application or loading rate) (g/m2-d)
kg mass transfer coefficient to the atmosphere (m/d)
KH Henry's Law constant (concgas/concwater)
λV effective first-order decay coefficient for upper zone (d-1)
LU thickness of upper zone of contamination (m)
Bw water phase bulk partition coefficient ( V—water/ V—total)
If net water infiltration rate through upper zone (m/d)

The mass transfer coefficient kg is calculated according to the empirical model
suggested by Mackay, et al. (1982):

where 
kg mass transfer coefficient to the atmosphere (m/d)
U10 10 meter wind speed (m/s)
νg kinematic viscosity of gas phase (L2/T)
Dg diffusivity of gas phase (L2/T)
(νg/Dg) Schmidt number (dimensionless)

and equilibrium conditions and linear partitioning are assumed.  The aqueous phase bulk
partition coefficient Bw is calculated from 
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CA ' CL exp &λv

Bw (Lv&Lu)
If

(4)

where
Bw water phase bulk partition coefficient ( V—water/ V—total)
θw volumetric water content ( V—water/ V—total)
θg volumetric gas content ( V—gas/ V—total)
KH Henry's Law constant (concgas/concwater)
θo volumetric hydrocarbon content ( V—oil/ V—total)
Ko hydrocarbon-water partition coefficient (concoil/concwater)
ρb bulk density of soil (masssoil/ V—total)
Ks soil-water partition coefficient ( V—water/masssoil)

Leachate enters the lower part of the vadose zone, which extends from the bottom
of the upper (contaminated) zone to the top of the saturated zone.  In this lower zone, the
constituent is subjected to adsorption, degradation, and further leaching under the same
conditions and assumptions of local equilibrium and linear partitioning which applied to
the upper zone.  In the lower zone, however, volatilization is not considered.  The
aqueous phase concentration reaching the aquifer, CA, is modeled as

where
CA concentration of contaminant reaching aquifer (g/m3)
CL aqueous phase concentration leaching from upper zone (g/m3)
λV effective first-order decay coefficient for upper zone (d-1)
Bw water phase bulk partition coefficient ( V—water/ V—total)
LV thickness of vadose zone (m)
LU thickness of upper zone of contamination (m)
If net water infiltration rate through upper zone (m/d)

2.2  The Saturated Zone Model
Contaminant fate and transport in the saturated zone is based on the two-

dimensional, advection-dispersion equation including a sink term for degradation, a
retardation factor for adsorption, and an additional term to account for dilution caused by
regional infiltration recharge.  Assuming a steady-state, uniform flow field (in the x-
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v MC
Mx

& Dxx
M2C
Mx 2

& Dyy
M2C
My 2

% λ R C %
IR R C

b
' 0 (5)

C(0,y) ' C0 exp &
y 2

2σ2

and

C(4,y) ' C(x,4) ' C(x,&4) ' 0

(6)

direction) and an isotropic and homogeneous aquifer, the advection-dispersion equation
becomes

where
v groundwater seepage velocity in the X direction (m/d)
x spatial coordinate parallel to groundwater flow direction (m)
y spatial coordinate transverse to flow direction (m)
Dxx longitudinal dispersion coefficient, calculated as longitudinal dispersivity

aL times groundwater velocity v (m2/d)
Dyy transverse dispersion coefficient, calculated as transverse dispersivity aT

times groundwater velocity v (m2/d)
λ effective first-order degradation rate constant (d-1)
R retardation factor (dimensionless)
IR net regional infiltration rate (m/d)
b saturated thickness of aquifer (m)
C(x,y) concentration in x-y plane of aquifer (g/m3)

The solution to this partial differential equation is constrained by the boundary
conditions that the solute concentration profile perpendicular to the flow direction at
x = 0 follows a gaussian or normal probability distribution, and that the solute
concentration equals zero at x and y equal to infinity.

These conditions can be expressed mathematically as

where
C0 maximum concentration at the plume source in the saturated zone (g/m3)



Chapter 2 Development of SSGPLUME

9

X '
v x
Dxx

, Y '
y
σ

, c '
C
C0

,

D '
Dxx Dyy

σ2 v 2
, and Λ '

R Dxx

v 2
λ%

Ir

b

(7)

c(X,Y)'
2
π m

4

0

exp &w 2%X&X 1%4Dw 2%4Λ
2

cos(wY) dw . (8)

c(X,Y) '
C(x,y)

C0

'

exp X
2

1& 1%4Λ&
Y 2

2%
4XD
1%4Λ

1%
2XD
1%4Λ

, (9)

σ standard deviation of the normal probability distribution used to represent
the source width (m)

By nondimensionalizing the equations through the introduction of the variables

Huyakorn has arrived at the dimensionless solution

Charbeneau has derived an asymptotic solution, where the integrand drops off rapidly
with w.  Using the binomial theorem to replace the square root term and integrating
produces

a dimensionless form which is easily programmed and is an excellent approximation of
the more exact analytical solution (Smith and Charbeneau, 1990).  

2.3  Coupling of the Models
A mass balance approach is used to equate the constituent flux entering the

aquifer (at concentration CA) and the mass transported in the contaminant plume (with an
initial peak concentration of C0 # CA).  As illustrated in Figure 1, a mixing zone is
established as the control volume.  Mass fluxes are calculated and equated as presented in
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C0 '
CA If Af

π
2

bvnσ 1% 1%

4(λ%
IR

b
)RDxx

v 2

(10)

the Environmental Protection Agency's Composite Landfill Model (EPACML)
(Woodward-Clyde, 1989), and can be represented by

where
CA concentration of contaminant reaching aquifer (g/m3)
If net water infiltration rate through upper zone (m/d)
Af total ground surface area of the contaminant source (m2)
b saturated thickness of aquifer (m)
v groundwater seepage velocity in the X direction (m/d)
n porosity of the aquifer ( V—voids/ V—total)
σ standard deviation of the normal probability distribution used to represent

the source width (m)
C0 maximum concentration at the plume source in the saturated zone (g/m3)
λ effective first-order degradation rate constant (d-1)
IR net regional infiltration rate (m/d)
R retardation factor (dimensionless)
Dxx longitudinal dispersion coefficient (m2/d)

The value of σ is based on the width of the surface source W, and is calculated as
σ = W/4 as long as C0 # CA.  The shape of the probability distribution which represents
the contaminant plume at x equals zero is constrained so that the maximum concentration
C0 does not exceed the incoming concentration CA, a physical impossibility.  In the case
that the application of Equation 10 results in C0 > CA, the maximum concentration is set
equal to that incoming (C0 = CA) and a new σ is calculated using a variation of Equation
10:
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C0 ' CA

and

σ '
If Af

π
2

bvn 1% 1%

4(λ%
IR

b
)RDxx

v 2

(11)

y( C
C0

,X)'σ 2%
4DX
1%4Λ

X
2

(1& 1%4Λ)& ln C
C0

1%
2DX
1%4Λ

(12)

The computer model SSGPLUME is essentially a calculation of the aqueous
phase concentration C(x,y) over an area extending from the origin (directly below the
edge of the surface facility) to user-specified distances x and y from the origin, at a user-
specified resolution.  The result is a pre-set series of transects through the plume (one
along the x-axis and five perpendicular to it) and a concentration contour map over the
rectangular area enclosed by the points (Xmin,Ymin) (Xmax,Ymax).  Chapter 4 covers
ShowFlow's representation of this plume "surface".

Concentration contours, presented over the xy-plane, are calculated with y as
function of X and various pre-set fractions of the maximum concentration in the aquifer. 
Equation 12 is a variation of Equation 9 and is solved for y.  (Recall that y = σY.)

Calculating the concentration is a straightforward application of Equations 1, 2, 3,
4, 7, 9, 10, 11, and 12, given the input parameters and a range of x and y to solve over. 
The input parameters are expected to be in SI units, though the concentration C(x,y) units
are arbitrary.  The SSGPLUME program is written in the C language and appears in
Appendix C. 

Notation used in the equations:

Af total ground surface area of the contaminant source (m2)
b saturated thickness of aquifer (m)
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Bw water phase bulk partition coefficient ( V—water/ V—total)
C0 maximum concentration at the plume source in the saturated zone (g/m3)
CA concentration of contaminant reaching aquifer (g/m3)
CL aqueous phase concentration leaching from upper zone (g/m3)
C(x,y) concentration in x-y plane of aquifer (g/m3)
c(X,Y) concentration as a function of X and Y (dimensionless)
Dg diffusivity of gas phase (same units as νg) (L2/T)
Dxx longitudinal dispersion coefficient (m2/d)
Dyy transverse dispersion coefficient (m2/d)
If net water infiltration rate at the facility (m/d)
IR net regional infiltration rate (m/d)
kg mass transfer coefficient to the atmosphere (m/d)
KH Henry's Law constant (concgas/concwater)
Ko hydrocarbon-water partition coefficient (concoil/concwater)
Ks soil-water partition coefficient ( V—water/masssoil)
LU thickness of upper zone of contamination (m)
LV thickness of vadose zone (m)
mL mass release (application or loading rate) (g/m2-d)
n porosity of the aquifer ( V—voids/ V—total)
R retardation factor (dimensionless)
U10 10 meter wind speed (m/s)
v groundwater seepage velocity in the X direction (m/d)
W width of the surface source (m)
x spatial coordinate parallel to groundwater flow direction (m)
y spatial coordinate transverse to flow direction (m)
θw volumetric water content ( V—water/ V—total)
θg volumetric gas content ( V—gas/ V—total)
θo volumetric hydrocarbon content ( V—oil/ V—total)
λ effective first-order degradation rate constant (d-1)
λV effective first-order decay coefficient for upper zone (d-1)
νg kinematic viscosity of gas phase (same units as Dg) (L2/T)
ρb bulk density of soil (masssoil/ V—total)
σ standard deviation of the normal probability distribution used to represent

the source width W (m)
Note that the units of concentration (g/m3) and (mg/L) are equivalent.
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Chapter 3
Programming Development of ShowFlow

The Windows programming environment has been developed by Microsoft
Corporation for creating Windows applications for DOS computers.  The C language was
chosen as a programming platform for its versatility and elegance, and the Microsoft
Windows Software Development Kit (SDK) provides several hundred auxiliary functions
and libraries geared specifically toward building a Windows interface.  The SDK is not
for the casual programmer, as Windows applications require carefully structured
programming and a deeper understanding of the computer than is required by ordinary
languages.  Despite its intricacies, ShowFlow's modular design and in-code
documentation make the conversion from running SSGPLUME to another model
straightforward.  Such a conversion is the topic of later sections of this chapter.
 
3.1  Advantages of the Windows Interface

Anyone who has used Windows can attest to its power and ease of use, but there are
other reasons to adopt it as a user interface.  With the SDK, Microsoft has promoted a
standardized appearance for all Windows applications which closely parallels similar
interfaces used by Macintosh, SUN, and DEC systems.  The look and feel of windows,
labels, and menus is the same for all applications, with the beneficial result that a user
familiar with one will feel at home with others and will already know how to use it.  Not
only is the appearance of Windows applications standardized, but the methods of storing
and displaying information is as well.  Bitmaps, texts, and metafiles can be exchanged
between applications via built-in Windows functions and standard applications.  Several
Windows applications can run simultaneously, but the environment is carefully managed
so that the dynamic memory allocations do not interfere with each other, a remarkable
accomplishment for the DOS environment.

3.1.1  The Standard Windows Interface
All Windows applications share several aspects.  The standard window has a title

bar with a system menu on the left and display mode controls on the right, moveable
borders, and a menu bar of available commands.  Attributes such as screen colors can be
changed on a system (via the Control Panel), and all the Windows applications running
on that system will assume those attributes.

Further standards are recommended by Microsoft in the Application Style Guide
provided with the SDK.  For example, any application using files should include a "File"
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option in the main menu, with "New", "Open", "Save", and "SaveAs" commands, and
similar guidelines are suggested for editing controls.  Editing controls further have
suggested standard "accelerators", or "hot keys" such as CTRL + INSERT for "Paste". 
Although this kind of editing does not apply to ShowFlow, accelerator keys are used for
almost all other functions.  Used in combination with the mouse, accelerators can
markedly enhance a user's efficiency.

3.1.2  Exchange of Data
In addition to being attractive and self-instructive, Windows provides means to

exchange data between applications.  One such link is the Dynamic Data Exchange
(DDE), which maintains a "live link" between applications so that data may be changed
in one application and automatically updated in another.  For example, a chart generated
in EXCEL is dynamically linked to a spreadsheet of data, and may also be included as a
figure in a WORD FOR WINDOWS document.  When the spreadsheet data change, so
does the EXCEL chart, and so does the WORD figure.

Although ShowFlow does not use the DDE facility, it can export graphs as bitmaps
via the Clipboard.  The Clipboard is a standard Windows feature for the transfer of
bitmaps, texts, and metafiles between and within applications, with the commands "Cut",
"Copy", and "Paste".  The item of interest is cut or copied to the Clipboard, and pasted
from it, so that the Clipboard acts as a buffer.  Any time "Cut" or "Copy" is used, the
Clipboard is cleared of any previous data, imposing a one-item limit on storage.  All
applications have access to the same Clipboard, so that an item copied from one may be
pasted into another.  Drawings made in PAINTBRUSH may be pasted into a WRITE or
WORD document, or text may be included in a drawing.  Graphs generated by
ShowFlow may be copied to the Clipboard and pasted into PAINTBRUSH where text
and other annotations can be added, and then shuttled to a paper in Windows WRITE, for
example.  All of this can be done without leaving ShowFlow, so that the user can run a
model in ShowFlow and write a paper in WRITE with both applications running side-by-
side on the same screen.  This is the beauty of Windows.

3.2  How Windows Programs Work
Before attempting a conversion of ShowFlow to run another model, it will be

important to understand some of the basics behind Windows programs in general. 
Following this section is The Structure of ShowFlow, which explains how the ShowFlow
application works in particular.  All of these programs share some unique features: a
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message-driven logic and a dynamic memory environment, for example.  These topics
are presented briefly for the curious reader, but refer the user to Programming
WINDOWS (Petzold, 1988) for a thorough discussion.  Grasping these concepts is not
prerequisite to modifying ShowFlow, but is necessary to understanding its logic.  The
reader should also take note of the Typographical Conventions used in this paper,
outlined in Appendix A: User's Guide to ShowFlow.

3.2.1  Message Processing
Traditional computer programs run in a more or less linear fashion, following a pre-

determined course of events and prompting the user for any needed information.  If the
user is presented with a range of choices, the program may be called "menu-driven",
since the branching is controlled by the user.  Windows programs have menus of
commands as well, but here the similarity stops.

What makes Windows codes unique is the concept of messages.  Messages are
constantly being fed to a part of the program called a Window Procedure, which either
processes the message in a decision-making tree or dispatches it to another message-
processing procedure.  Messages originate from a variety or sources; the system, the
keyboard, the mouse, and the program itself can all send messages to Windows' central
message queue.  The inner workings of Windows decides which programs should receive
a given message and dispatches it accordingly.  Each program repeatedly checks the
message queue for its messages and processes them.  This loop is in the code module
ShowFlow.C (this file and other program modules are listed in Appendix B).  Each
Windows program has a subroutine called WinMain which processes incoming messages. 
After drawing the main window on the screen, WinMain continually executes this
message-processing loop:

while ( GetMessage( &msg, NULL, 0, 0 )) 
{
    if ( !TranslateAccelerator( hWnd, hAccel, &msg )) 
    {

TranslateMessage( &msg );
DispatchMessage( &msg ); 

    }
}

The function names indicate that this loop simply reads messages, translates them, and
dispatches them to other parts of the program.  

The sections of the program which actually examine the messages and make
decisions are the Window Procedures.  Each window, including the main (parent)
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window, any child windows (for example, ShowFlow's graph windows), and dialog
boxes all have such a procedure, identified by a function name ending in "Proc". 
Examples are ShowFlowWndProc, Graph1WndProc, and EditDlgProc, all found in
appropriate modules of the program.  Each of these examines messages using the C
switch and case construction to determine branching.  

As an example, when the user clicks with the mouse on the "Save" command in the
ShowFlow window, Windows sends a message to WinMain in ShowFlow.C, which
forwards the message to ShowFlowWndProc.  This procedure tests the value of the
message by matching it to the menu identifier IDM_SAVE, and launches the
SaveParamFile subroutine.  All Windows programs process messages similarly.

3.2.2  Memory Management
The dynamic memory management employed by Windows is at once a blessing and

a curse.  Most programming languages rely on static memory, where the storage address
for a particular variable does not change.  In Windows, the location cannot be assumed
constant since the memory is frequently reorganized to make room for more data or code
segments.  This dynamic memory allocation is what makes Windows work so well in
running multiple applications.  When a particular segment of code is needed in starting or
continuing an application, Windows will load it from the disk.  If more room is needed
for the segment, Windows will discard unused segments and reload them later when
needed.  

For example, when ShowFlow runs SSGPLUME in a spawned DOS subprocess, it
needs to clear a large block of memory for the model program to run in.  To do this, the
GlobalCompact function is called, which shuffles the existing memory into a more
compact form.  If necessary, discardable code segments (identified in the ShowFlow.DEF
file) will be discarded to make room.  When the model program has completed execution,
ShowFlow resumes operation, reloading segments as they are needed (for drawing
graphs, for example).  

Fortunately, Windows also keeps track of where everything is located by using
handles, and when your program refers to a variable Windows knows where to find it, but
still the programmer is not free from memory worries.  Certain operations like file input
and output require a static block of memory, which can be allocated with the GlobalAlloc
function and freed with the GlobalFree function.  Examples of these operations can be
found in the ReadFile and WriteFile subroutines in the SFFile.C module.  Understanding
memory management is one of the most challenging aspects of Windows programming.
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3.3  The Structure of ShowFlow
3.3.1  Program Modules

ShowFlow is designed in several modules to use as little memory as possible. 
These modules are written as separate C language source code files and compiled as code
segments, each containing code related to a specific task.  These segments are identified
in the ShowFlow.DEF module definition file and are given attributes about how Windows
can treat them in managing memory.  For example, the segment labelled _FILE is given
the attributes LOADONCALL, MOVEABLE, and DISCARDABLE.  This means that the code in
the _FILE segment is loaded from disk only when it is needed (when some file I/O is
done), that it can be moved around in memory, and that it can be discarded if Windows
needs to make room for something else.  (This feature allows several programs to occupy
the screen at once.)  In contrast, the segment labelled _TEXT, which contains the main
ShowFlow module ShowFlow.C, is labelled PRELOAD and MOVEABLE, instructing
Windows to load the segment when first starting ShowFlow, and to move it if necessary,
but does not give permission to discard the _TEXT segment.

The program modules are compiled by the ShowFlow.MAK make file.  The only
segment which contains more than one module is the _FILE segment, which contains code
from SFFile.C and SFFilDlg.C, both necessary to perform the file operations Open, Save,
and SaveAs, which involve reading and writing files.  Other segments are _FILE, _GRAPH,
_INIT, _PRINT, and _RUN, which are used in the operations of editing the parameter file,
generating graphs, program initialization, printing graphs, and running the model
program, respectively.  The program modules have similar names and are described
individually below:

ShowFlow.C This is the central C module, containing the WinMain subroutine,
ShowFlowWndProc, and subroutines related to displaying help files,
posting error messages, and other general-purpose tasks.  The _TEXT

segment, which contains the ShowFlow.C code, is not discardable since it
contains the principal message-processing loop.  Program control starts in
WinMain which executes the initialization code (calling the subroutines in
SFInit.C) and then dispatches Windows messages to other parts of the pro-
gram.  The central message-processing loop is in ShowFlowWndProc,
which executes branching as signalled by the user's choice of menu com-
mands.  Depending on the command, ShowFlowWndProc will call
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subroutines in ShowFlow.C, SFEdit.C, SFFile.C, SFGraph.C, SFPrint.C,
or SFRun.C.

SFInit.C This module is used only when ShowFlow first starts up or when a
subsequent instance is run.  Like all Windows programs, more than one
instance may be run at a time.  Since all instances share the same code
segments to save memory, information from previous instances must be
shared with the new one.  This is also handled in the SFInit.C module with
the Windows GetInstanceData function.

SFEdit.C The Parameter File Editor is run from this module.  The
EditDlgProc subroutine handles message processing for the EditBox
dialog box.

SFFile.C The tasks of reading and parsing both parameter and data files, and
formatting and writing parameter files are performed in this code module. 
File names are obtained from the user by calling the SFFilDlg.C module.

SFFilDlg.C The OpenBox, SaveBox, and SaveAsBox dialog boxes are created
and processed by this module, which is called by SFFile.C.  Both
SFFilDlg.C and SFFile.C are compiled into the _FILE code segment since
they are always used together.

SFGraph.C This module executes the creation and message-processing of the
graph windows, as well as the composition and "painting" of the graphs. 
Each graph window has its own message loop in the subroutines
Graph*WndProc (where * = 0, 1, 2 ...) and its own suite of datasets to plot. 
Each time a graph is created, a movable block of memory is assigned to
contain the data for the graph, and when the graph window is destroyed,
this memory block is freed.  The PaintGraph subroutine is called each time
a graph window is painted, or redrawn, which happens when a window is
uncovered or resized.  The appearance of the graph depends on the size of
the graph window.



Chapter 3 Programming Development of ShowFlow

19

SFPrint.C ShowFlow supports printing of bitmaps on pixel-based printers,
including dot matrix and laser printers.  (Since plotters are vector-based
they cannot print bitmaps.)  All of the code necessary to do the printing is
in this module, which is called from the Graph*WndProc subroutines
when the user chooses the "Print Graph" option.

SFRun.C This code module creates and processes the RunBox dialog box and
initiates the spawning of a DOS subprocess in which to execute the model
program.  A special interrupt function Int21Function4B is called to do the
spawning.  This procedure is detailed in the Microsoft Windows Software
Development Kit Application Note for Spawning Applications.

3.3.2  Auxiliary Files

ShowFlow.H This C header file is included in all the ShowFlow modules.  It
defines global program constants and all of the function prototypes.

SFDialog.H An additional header file defining dialog box constants (IDD_*) is
#included into the ShowFlow.H header file.  These constants are
maintained by the dialog box editor DIALOG and so are kept in a separate
file.

ShowFlow.DEF This module definition file identifies the program segments, exports
the Windows procedure subroutines, and defines several other environment
variables for ShowFlow.  This file is called by the linker when assembling
the ShowFlow.EXE program.

ShowFlow.MAK The make file is used to compile all the elements of ShowFlow, and
makes use of the Microsoft C MAKE utility which conveniently
recompiles only those files which have changed since the last compiling. 
C language modules are compiled by the C compiler, and resources by the
SDK's resource compiler.  The *.OBJ object files and *.RES resource file
are then linked by the Windows SDK LINK4 program following the
instructions given in the file ShowFlow.LNK.
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ShowFlow.LNK This special link file is necessary since there are too many objects to
list on one line as normally required by the LINK4 command in the make
file.  Unfortunately, no comments are allowed in ShowFlow.LNK so it has
no in-code documentation.

SSGPLUME.PIF The model program must have a program information file (PIF) with
the same prefix as the model.  This PIF contains information about how
much memory is needed to run the model, etc.  Windows comes with a
special PIFEDIT program and instructions on how to construct these files,
which are necessary to run DOS applications like SSGPLUME.

3.3.3  Program Resources

ShowFlow.RC The resource script, unique to Windows programs, identifies
ShowFlow's resources, which include the definitions of dialog boxes (from
ShowFlow.DLG), the program icon (from ShowFlow.ICO), the menu bar
and pull-down menus, accelerators, help text resources (from
SFHelp_*.TXT), and string constants.  All of these resources are compiled
by the SDK's resource compiler from the make file.  The resource script
and the files it references contain almost all of the text displayed in
ShowFlow, so that changing an error message or even translating the
entire program into another language requires only altering strings in
ShowFlow.RC, ShowFlow.DLG, and SFHelp_*.TXT.

ShowFlow.DLG The dialog box definitions are maintained in this separate file by the
dialog box editor DIALOG, provided with the SDK.  The suite of
definitions is then included as a resource in the ShowFlow.RC resource
script at compile time.

ShowFlow.ICO The ShowFlow icon, which appears in the AboutBox and when the
program is minimized (its "iconic" state), is a bitmap created with the
SDK's ICONEDIT program (replaced in Windows 3.0 with SDKPAINT). 
It is included as a resource in the ShowFlow.RC resource script at compile
time.
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SFHelp_*.TXT Several help files are also included as resources, with the generalized
file names SFHelp_*.TXT, where the * represents a letter identifying the
help topic.  For example, SFHelp_E.TXT instructs the user in Editing the
parameters.  These help files are simple text files, limited to a width of
SCRBUFWIDTH characters and a length of SCRBUFLINES lines.  These
constants are defined in ShowFlow.H and represent the dimensions of the
screen buffer in which the help files are displayed.  Any number of
additional help files can be created, but each must be defined in the
ShowFlow.RC resource script both as a menuitem (with an associated
menu ID IDD_HELP_*) and a TEXT resource.  Each menu ID must be
assigned a value in ShowFlow.H, and each must have a corresponding
"case: IDM_HELP_*" statement in the main message-processing loop
ShowFlowWndProc in the ShowFlow.C module.

3.4  System Requirements
Modification of ShowFlow version 1.0 will require the following software:

• Microsoft Windows version 2.1 or later.
• Microsoft C Compiler version 5.1 or later.

The C compiler is needed for some standard C libraries and header
files, and for the compiler.

• Microsoft Windows Software Development Kit ver. 2.0
The SDK includes the libraries for the five hundred-odd Windows
functions, some alternative header files, and the linking program.

• Microsoft Windows SDK Application Note for Spawning Applications
Although this Application Note itself is not necessary for converting
ShowFlow, the object file which comes with it is: WSPAWN.OBJ
must be available to the linker when compiling the ShowFlow
application.

• A text editor will be necessary for editing files.

3.5  Programmer Requirements
Although a general knowledge of the C programming language is advised, minor

modifications to ShowFlow will not require it.  Modification of ShowFlow does not
require advanced skills.  Most changes involve simple "boilerplate" substitutions or



Chapter 3 Programming Development of ShowFlow

22

extensions of code which is already present, and in-code "CONVERSION NOTES" have
been added to identify appropriate sections of the program modules.  Specific changes
are included in a later section.

3.6  Compatibility Between ShowFlow and the Model
The ShowFlow application works closely with the model program, and so certain

compatibilities must exist.  Most of the exchange of information is through standard
formatted ASCII data files, so the protocol is straightforward.  Another restriction,
depending on the computer, is the amount of available memory.  

3.6.1  System Memory Requirements
Both ShowFlow and Windows consume some random access memory (RAM) even

after compacting themselves, and a limited amount of space is available for running the
model program.  Newer machines with more than the standard 640K RAM available will
perform better and allow larger models to run.

The best way to find out how much memory is available is to run Windows and
ShowFlow, and check the amount of RAM.  This is displayed in the About box for the
Program Manager, (choose the "About Program Manager..." command from the "Help"
menu.)  The number displayed is the amount of free memory in kilobytes.

3.6.2  Exchange of Data via Files
The structure of data files is important to the linking of ShowFlow and the Model. 

Examples of each file are included at the end of Appendix C.  It is assumed that three
such files exist (with identical file name prefixes but different file name extensions) for
each simulation:

•  The parameter file (extension *.PAR) is written by ShowFlow and read by both
ShowFlow and the Model as an input file.  The formatting can take any
form as long as the reading and writing are compatible, and is done in the
subroutines ReadParamFile and SaveParamFile in the SFFile.C module.

•  The data file (*.DAT) is produced by the Model, and contains data used in
drawing graphs for ShowFlow.  Again, the structure may be flexible,
though the current requirements of ShowFlow are easily met.  Although
the code in the subroutine ReadDataFile appears complex, it is designed to
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read a generalized data file with these minor constraints:  The first record
is expected to be a comment or title for all three graphs, and may contain
spaces and other characters.  Following the comment line are three
datasets, delineated by the values in the first column (the first value in
each record).  These values are associated with the horizontal axis in each
graph and should be monotonically increasing for each dataset. 
ShowFlow recognizes a change of dataset when the first value in a record
is less than that of the previous record.  All values should be separated by
spaces and all records by a carriage return and/or line feed character.

•  The text file (*.TXT) is also produced by the SSGPLUME model, and contains
formatted data for reading by the user.  This file has no required format
since it is not read by ShowFlow.

3.6.3  Execution of the Model Program
In general, the model program must be able to run from the command line with no

further input from the user.  SSGPLUME is flexible, and will prompt the user for input
and output file names only if they are not provided on the command line.  A typical DOS
command line to run SSGPLUME is:

SSGPLUME FILENAME.PAR FILENAME.DAT FILENAME.TXT
which lists the parameter, data, and text filenames, respectively.

The reason for the necessity of command line arguments is that the spawning
process is limited to one command line.  This command line is constructed by ShowFlow
prior to spawning (see the RunModel subroutine in the module SFRun.C) and is therefore
transparent to the user.

3.7  Specific Code Modifications
ShowFlow was designed in as general a way as possible to reduce the work

necessary in modifications.  For example, program constants used throughout the code
are centrally assigned in the ShowFlow.H header file, and most strings displayed by the
program are defined in the ShowFlow.RC resource script file.  However, these
generalities can only do so much, and since future users will undoubtedly want to make
changes in ShowFlow to accommodate different model programs, the necessary
modifications have been anticipated.
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Required program code modifications, which may be made with any ASCII text
editor, have been divided into two categories for convenience.  The first involves changes
which will be necessary for any modification (General Modifications), and the second
involves additional changes needed only if the number of standard graph windows is
changed from three (used by the current ShowFlow) to some other number (Graph
Number Modifications).

All the changes are noted in the code listings where appropriate, in special boxed
comments entitled "CONVERSION NOTES".  The easiest way to find them is to search
for these words using a text editor.  The best instruction about changes will be found in
these CONVERSION NOTES, but an outline of modifications is provided here, grouped
by program module (file):

3.7.1  General Modifications

SFEdit.C • The testing of values entered by the user from the Parameter File
Editor may be enhanced to almost any degree as a method of "idiot-proof-
ing" the model program.  Although the model program may also perform
these tests, doing so here gives the user the opportunity to correct mistakes
immediately with guidance from ShowFlow's error messages.

SFFile.C • The subroutines ReadParamFile and ReadDataFile are both sensitive
to what delimiters are used to separate (parse) data elements (tokens) in
each file, which depends on the respective formats of the parameter and
data files.  Usually, these tokens are parsed by searching for a space, tab,
carriage return, or line feed character.  Whatever the delimiters are, they
must be defined in each of these functions in the string variable:
szDelimiter.

• The SaveParamFile subroutine performs the formatting of the
parameter file, which is written in the WriteFile subroutine.  Any format
consistent with the model program may be used, and appropriate changes
should be made.

SFRun.C • Changes needed in the RunModel subroutine reflect changes in the
command line arguments used to execute the model program.  ShowFlow
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currently uses three arguments (filenames) in addition to the name of the
model program:

SSGPLUME FILE.PAR FILE.DAT FILE.TXT
If the new model is not executed in this fashion, the command line string
must be assembled differently, as outlined in the code comments.

ShowFlow.H • Several program constants which are model-specific need to be
adjusted, such as NPARAMS, MAXDATAPTS, and others defined in this
module.

ShowFlow.RC •If a new icon file has been defined, it should be included here. 
Icons can be designed with the ICONEDIT program described in section
3.8.2 below.

• Several string constants such as the model name IDS_MODELNAME

must be changed as appropriate. 

SFDialog.H • The definition and assignment of dialog box IDs (beginning with
IDD_) must reflect the number of parameters required by the model
(remember to start counting with zero).  These values are assigned to edit
control IDs in the EditBox dialog box, and the numeric values must be
consecutive.  Dialog boxes can be created and edited using the DIALOG
program described in  section 3.8.1 below.

ShowFlow.DLG
• The EditBox dialog box (the Parameter File Editor) will need an
extensive revision and will probably be the most difficult part of the
conversion process.  To edit dialog boxes, see the section 3.8.1 below
about using the SDK's DIALOG program.

HELP Files • The help files are ASCII text files which are included in ShowFlow
as TEXT resources in the ShowFlow.RC resource script file.  The file
names are of the form SFHELP_*.TXT where * is an identifying letter. 
These files may be edited to suit the application, but careful attention must
be paid to their size:  The text may not exceed SCRBUFWIDTH characters
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per line or SCRBUFLINES lines total, since this is the size of the array for
the help utility's screen buffer.  The constants SCRBUFWIDTH and
SCRBUFLINES are defined in ShowFlow.H, and may be changed if
necessary.  Keep in mind that increasing these values adds to the amount
of memory required by ShowFlow.

3.7.2  Graph Number Modifications
These modifications need be done only if you are changing the number of graphs

from the current number of three.

SFInit.C • The section where graph labels and other strings are loaded into the
ShowFlow using the LoadString function must include additional strings
associated with additional graphs.

• Each graph window to be created must be initialized and registered
as its own class with the RegisterClass function.

• String constants must be transferred to subsequent instances of
ShowFlow with the function GetInstanceData.

SFFile.C • The ReadDataFile subroutine is configured to initialize and read data
for a set number of graphs (currently three).  The initialization sets all
values to zero in consecutive for loops.  The reading of data arrays, while
complicated looking, is modularized and easily modified.  Study the logic
and labels and the changes should be apparent.

SFGraph.C • In the variable declarations at the top of the code, variables must be
added to correspond to each graph generated.  In some cases, additional
but similar variables are declared; in others the dimensions of an existing
variable are changed.  

• Two boilerplate code modifications occur in the subroutine
GraphDlgProc, involving the checkbox controls in the GraphBox dialog
box.
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• The subroutine GraphInit creates the graph windows, and a
boilerplate section of code containing the CreateWindow function must be
repeated for each.

• An entire subroutine, Graph*WndProc ( where * = 0, 1, 2, ...) must
be included for each graph window to process messages separately.  This
subroutine should imitate the existing ones, substituting the index numbers
where appropriate.  The new subroutine(s) must be declared in
ShowFlow.H and exported in ShowFlow.DEF.

• Near the beginning of the GetGraphData subroutine, a case:
statement must be repeated within the switch( iGraphType ) logic for each
graph.

• A similar modification must be made near the beginning of the
PaintGraph subroutine.

ShowFlow.H • Some program constants are defined for each graph, such as the
number of datasets: GR*DATASETS (* = 0, 1, 2, ...) 

• The string constants for graph axis labels (IDS_G*CAPTION, etc.) must
be assigned for new graphs.  These constants are assigned a numeric value
here in ShowFlow.H, a string value in ShowFlow.RC, and are loaded into
ShowFlow in SFInit.C.

• Declaration of the subroutines labelled Graph*WndProc must reflect
the number of graphs generated.

ShowFlow.RC •The strings used for graph axis labels (IDS_G*CAPTION, etc.) must be
defined for new graphs.  These constants are assigned a numeric value in
ShowFlow.H, a string value here in ShowFlow.RC, and are loaded into
ShowFlow in SFInit.C.

SFDialog.H • The GraphBox dialog box contains a checkbox and text control for
each graph, and IDs must be assigned for each in the SFDialog.H file.
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ShowFlow.DLG
• The GraphBox dialog box contains a checkbox and text control for
each graph.  To edit dialog boxes, see the section below about the SDK's
DIALOG program.

ShowFlow.DEF
• This module definition file exports all Windows procedures,
including the Graph*WndProc (* = 0, 1, 2, ...) declared in ShowFlow.H
for each graph.  Add one export statement for each graph added.

3.8  Tools provided with the Software Development Kit
Several programming aids are provided with the SDK, including a icon editor

ICONEDIT (SDKPAINT, in version 3.0), a dialog box editor DIALOG, a memory
shuffler SHAKER for testing program integrity, and a memory viewing program
HEAPWALK.  For the purposes of converting ShowFlow, the first two will be most
useful.  All are well documented in the Software Development Kit.

3.8.1  DIALOG.EXE
This dialog box editor makes easy work of designing a dialog box, providing an

editing screen with special commands for creating various controls, and generating a new
ShowFlow.DLG dialog box description file and its associated header file SFDialog.H. 
To use this facility, run the DIALOG program from Windows and open the resource file
ShowFlow.RES and header file SFDialog.H.  All of ShowFlow's dialog boxes are listed
in the "View Dialog..." menu, and choosing one will display it on the screen for editing. 
Most of ShowFlow's dialog boxes will not require modification, but, at the very least, the
ModelBox and EditBox will.  

The ModelBox is an "About..." box for the model program, and contains
information about its origins.  This box is displayed by choosing the "About the Model..."
command from ShowFlow's "File" menu.  To edit it, choose "MODELBOX" from the
"View Dialog..." menu.  Click on any controls (mostly text boxes) which you wish to
modify, and a dialog box will appear which contains information about the control,
including the text displayed in it and its control ID.  Modify the text as desired, and make
sure that the control ID is "-1", which means that there is no corresponding constant
defined in SFDialog.H.  This control ID should be used by all text box controls, and if
you add any (from the "Control" menuitem) be sure to set it to -1.  You will get a
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message that another control shares this ID, which is OK for text boxes since they do not
accept input.  Modifying the About box for ShowFlow ("AboutBox") follows the same
procedure.

The EditBox will require much more work, and is probably the most tedious part in
converting ShowFlow to run another model.  (Before choosing to edit the EditBox it is
advised to Maximize the DIALOG program to use the entire screen and provide access to
the menu bar.)  I will assume that the changes involve only a different number of
parameters with a new set of labels.  If other controls like checkboxes and radiobuttons
are to be added, their corresponding processing logic in other parts of the program must
also be added.  In any case, prerequisite to using the DIALOG program are some
modifications of the header file SFDialog.H.  These modifications are discussed in the
General Modifications section above, and entail defining control IDs for the parameters:
IDD_PARAM00, IDD_PARAM01, ... IDD_PARAMXX, where XX = number of parameters minus
one, since they start at index zero.  These IDs and their numeric constants must be
assigned before they can be referenced in the DIALOG program.

Bring up the EditBox dialog box for editing in the DIALOG program.  Inspection
will reveal that the edit controls (rectangular boxes for entering data) are identified by
their control IDs and are ordered consecutively.  The ordering is important, so if fewer
parameters are used, delete the extra ones from the end.  Likewise, if adding them, add
them to the end and label them with consecutive IDs.  Adding edit box and text box
controls is done by choosing these controls from the "Control" menu in the DIALOG
program.  After you have added enough edit boxes you may begin changing and adding
their text box labels, remembering to assign all text boxes a control ID value of -1.  The
edit boxes should be assigned the numeric constant corresponding to their control IDs, as
defined in SFDialog.H.  Edit boxes and text boxes may be resized and moved around on
the screen as long as the ordering is preserved, since this ordering is followed in moving
through the dialog box with the TAB key.  If the width of the edit boxes is changed, the
value of MAXPARAMLEN (defined in ShowFlow.H) should be changed to reflect the
maximum number of characters which can fit in the box.

Using the DIALOG program will take practice.  It is sometimes difficult to position
items exactly on the screen.  For fine tuning, the ShowFlow.DLG code may be edited
directly with a text editor to change positions of controls.  This is done by changing the
last four numbers in each control description record -- these define the position and size
of the control on the screen.  This technique is useful in lining up the final arrangement of
controls.
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3.8.2  ICONEDIT.EXE
The SDK provides a utility for creating small bitmaps for use as program icons. 

Windows SDK version 3.0 has replaced ICONEDIT with SDKPAINT.  The use of either
program is straightforward and self-explanatory.  Once the icon has been designed, it is
saved in a *.ICO file (ShowFlow.ICO is one), and included as a resource in the
ShowFlow program in the ShowFlow.RC resource script file.

3.9  Recompiling ShowFlow
Compiling the ShowFlow Windows application is made simple by using Microsoft's

MAKE utility and the files ShowFlow.MAK and ShowFlow.LNK, which contain the
compiling and linking commands, respectively.  All of the modules listed in
ShowFlow.MAK must be in the current directory.  This includes all of the source code
modules as well as the WSPAWN.OBJ spawning code and the WIN87EM.EXE math
coprocessor library.  Once all of the source codes have been edited, enter the following
command from the DOS prompt:

MAKE SHOWFLOW.MAK
and the MAKE utility will take over.  

ShowFlow.MAK can be constructed to compile ShowFlow.EXE for use with or
without a math coprocessor, and with or without the debugging aids.  For more
information, refer to the comments in the ShowFlow.MAK file pertaining to necessary
files and compiler switches.
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Chapter 4
Application of ShowFlow to SSGPLUME 
and Other Groundwater Models

The purpose of ShowFlow is to provide an intuitive and productive interface for
groundwater modeling, acting as a shell for the SSGPLUME model described in Chapter
2.  To this end, ShowFlow performs four basic functions: file management, pre-
processing of input data, model execution, and post-processing of data generated by the
model.  In addition to this, Windows provides for the transfer of data between
applications.  The details of using ShowFlow are covered in Appendix A: User's Guide to
ShowFlow.  This chapter illustrates the use of ShowFlow and SSGPLUME in simulating
groundwater contamination scenarios.

4.1  Specifying Input Data
The Parameter File Editor is used to specify the input parameters for the model, and

is invoked with the "Edit Parameters" command.  This is a self-explanatory form, with
each data item identified by a label and an entry field.  Units to be used are provided in
the label.  A sample form is shown in Figure 2, and each parameter field is explained
below.  Where appropriate, symbols used in the governing equations described in
Chapter 2 have been included for reference.
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Figure 2.  "Parameter File Editor" dialog box.  This is a simple error-checking form for entry of SSGPLUME
parameters.

 SITE DESCRIPTION:

X minimum point (m): Xmin and
X maximum point (m): Xmax

These limits specify the range of area over which SSGPLUME will calculate
contaminant concentrations, with X measured in the direction of groundwater flow,
with the origin at the edge of the surface facility.

X resolution (# of points)
This is the number of points in the X direction of the solution grid.  More points
will result in smoother graphs, but also in larger files.  The maximum number of
points is defined in ShowFlow.H as MAXDATAPTS and is currently set at 100. 
Experiment with this number to find a minimum number of data points which still
produces useable graphs.  When graphic resolution is important, the data point
resolution my be changed to the maximum value of 100.
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Y minimum point (m): Ymin and
Y maximum point (m): Ymax

These limits specify the range of area over which SSGPLUME will calculate
contaminant concentrations, with Y measured perpendicular to the direction of
groundwater flow, with the origin at the edge of the surface facility.

Y resolution (# of points)
See notes above for X resolution.

Width of facility (m): W
Area of facility (m2): Af

The areal size of the facility or disposal site is defined by its width transverse to
groundwater flow direction and its area, assuming a rectangular shape.

10-m wind velocity (m/s): U10
This is the wind velocity at the site, measured in meters per second at a height of 10
meters from the ground surface.

Water infiltration rate at facility (m/d): If
If is the NET infiltration rate of water at the site.

VADOSE ZONE CHARACTERISTICS:

Vadose zone thickness (m): LV
This is the thickness of the entire vadose (unsaturated) zone.

Contaminated zone thickness (m): LU
This is the thickness of the upper part of the vadose zone which has been directly
contaminated.

Degradation rate constant in vadose zone (d-1): λV
This is the first-order degradation rate constant for the constituent in the vadose
zone.  A different constant is defined for the saturated zone.

CONTAMINANT CHARACTERISTICS:

Loading rate / area (g/m2-d): mL
The mass loading rate is calculated as mass flux per unit area.  The units employed
here determine those of the final groundwater concentration.  If mL is expressed in
g/m2-d, the resultant concentrations will be in g/m3 (mg/L).  If concentrations units
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of g/L are desired, then mL should be given in kg/m2-d, though the graph labels will
still read "mg/L".

Bulk water partition coefficient: Bw
This is the volume of pollutant in the aqueous phase divided by the total volume.

Henry's Law constant: KH
This Henry's Law constant is calculated as the pollutant concentration in the
gaseous phase divided by that in the water phase.

Schmidt number: (νg/Dg)
The Schmidt number is the dimensionless ratio of the kinematic viscosity νg and the
diffusivity Dg in water of the gaseous phase of the constituent.  Dg and νg may be
expressed in any identical units.

AQUIFER CHARACTERISTICS:

Seepage velocity along X (m/d): v
This is the groundwater longitudinal seepage (not Darcy) velocity.

Dispersivity in X (longitudinal) (m): aL
The dispersivity is used to calculate the dispersion coefficient Dxx as Dxx = aL v.

Dispersivity in Y (transverse) (m): aV
The dispersivity is used to calculate the dispersion coefficient Dyy as Dyy = aT v.

Retardation: R
Retardation is used to quantify processes which inhibit migration of the pollutant
through the porous medium.  R is a scalar variable, so that a value of R = 1 implies
no retardation, and values R > 1 imply retardation.

Degradation rate constant in the aquifer (d-1): λ
This is the first-order degradation rate constant for the constituent in the saturated
zone.  A different constant, λV, is defined for the vadose zone.

Regional infiltration rate (m/d): IR
The NET regional infiltration rate (groundwater recharge rate) is used to calculate
dilution of the contaminant plume by recharge water.

Saturated thickness (m): b
This is the average saturated thickness of the aquifer.
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Figure 3.  Data entry error message.  The
Parameter File Editor displays error messages if
any field contains invalid data.

Porosity: n
This is the porosity of the saturated aquifer.

When the Parameter File Editor is first displayed, the text in the "Run Title" edit
box is pre-selected for editing.  The reverse video means that it will be replaced by any
text entered on the keyboard, or can be deleted entirely with the DELETE key.  The Run
Title is preselected since it will usually be changed.

Other editing fields are accessed by stepping through them with the TAB and SHIFT +

TAB keys or simply clicking on them with the mouse cursor.  Each field may be edited by
using the DELETE, BACKSPACE, or DIRECTION keys, or by positioning the cursor or
selecting text by dragging the "I beam" cursor over it.  The numeric fields are limited to a
few characters, but by using scientific notation ("1.2e10" or "2.54E-5") all practical
values should be available.  Since SSGPLUME is written in the C language rather than
FORTRAN, values may be entered in any format, with or without decimal points.

If the user wishes to abandon the current changes, the "Cancel" button (or ESC key)
will close the Editing window and ignore the changes.

When the user selects "OK" (or ENTER) to accept the changes made in the
Parameter File Editor, ShowFlow scans the fields for errors.  Error messages (Figure 3)
are generated if any data fields are deemed invalid according to the tests run in the
SFEdit.C module.  These tests scan all
numeric fields for illegal (non-numeric)
characters, and test several field values for
range limitations.  (Legal characters for the
fields are contained in the program constant
IDS_OKCHARS defined in the resource script
ShowFlow.RC.)  Range limitations vary, but
may test for values to be positive, to be
between zero and one, or to be non-zero, for
example.  Any field which contains an illegal
character or an out-of-range value will produce a Message Box containing information
about the problem.  After the user chooses "OK" (or ENTER) acknowledging the message,
the cursor is placed on the field in question to facilitate correction.  If no errors are
detected, control is returned to the main ShowFlow window and the parameters are ready
to save in a new file with the "Save As..." command.



Chapter 4 Application of ShowFlow to SSGPLUME

36

Figure 4.  Graphical representation of the plume.  ShowFlow uses three two-dimensional graphs to represent
the shape of the contaminant plume as generated by SSGPlume.

4.2  Displaying Results

After the model has been run, the "Graph Results" function of ShowFlow produces
three pre-set graphs showing the shape of the contaminant concentration plume
calculated by the SSGPLUME model (Figure 4). 
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Figure 5.  "Display Graphs" dialog box.  This
allows the user to choose which graphs to
generate.

Figure 6.  Standard ShowFlow graphs.  ShowFlow represents the contaminant plume using three two-
dimensional graphs.

  The three graphs are (1) a transect through the plume along the X-axis, (2) five transects
parallel to the Y-axis at 0.00, 0.25, 0.50, 0.75, and 1.00 times the maximum value of X,
and (3) a concentration contour map with contours at 0.1, 0.3, 0.5, 0.7, and 0.9 times the
maximum concentration of the plume in the saturated zone.  The mathematics behind
these calculations is discussed in Chapter 2: Development of the SSGPLUME Ground-
water Contaminant Transport Model.  

Choosing "Graph Results" produces a
dialog box which allows the user to select
which graphs are to be generated or to cancel
the procedure as shown in Figure 5.  Selecting
"OK" causes ShowFlow to draw the three
graphs in small "child windows" below the
"parent" ShowFlow main window (Figure 6). 
These graph windows can be resized or moved
about the screen, and the flexible images
within them can be copied to the Clipboard or
sent directly to the printer for hardcopy.  As a
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Figure 7.  On-screen comparison of results.  This is an easy and efficient way to examine the results of various
simulations. 

graph window is changed in size, the tick marks and labels are repositioned so that labels
do not overlap and tick marks are not too close together.  Each window is tied to a unique
data set, and so takes up one or two kilobytes (KB) of memory, but ordinarily there
should be sufficient resources to display dozens of graphs simultaneously.

Each time the "Graph Results" procedure is run, these graphs are produced in the

same locations on the screen, so unless they are moved they will be covered by the next
set of graphs.  To help organize the screen, the user may find it convenient to make the
windows smaller and arrange them on the screen so that only their unique graph titles are
visible (Figure 7).  Note that for smaller graph windows only the title is drawn, since the
graphs would be too small to be of use.  This saves on time needed to "re-paint" the graph
windows.

Graphs from different modeling scenarios can be compared side-by-side by mani-
pulating their sizes and position on the screen. Figure 8 shows an example demonstrating
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Figure 8.  Multiple simulations.  Graphs from several simulations can be stored on the screen for careful
examination.

the different plume shapes generated by SSGPLUME given wet and dry conditions.  In
this example it is important to remember that the concentration contours are measured
relative to the peak concentration, determined from the transect graphs.  The contours
show only the shape of the plume.  

Capturing the graphs displayed by ShowFlow can be done with the "Copy Graph"
and "Print Graph" commands as described in Appendix A: User's Guide to ShowFlow. 
"Print Graph" generates a printer hardcopy which is as close as possible to the actual
screen size of the graph.  "Copy Graph" gives a copy of the graph to the Clipboard, from
which it can be saved to a *.CLP file or pasted into a PAINTBRUSH drawing (Figure 9),
or as a figure in a document in any of several Windows word processors (Figure 10).  The
flexibility of ShowFlow's graphs and its ability to share them with other applications is a
direct result of programming ShowFlow in the Windows graphical environment.
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Figure 10.  ShowFlow and other programs.  Windows allows for ShowFlow to run simultaneously
with PAINTBRUSH and WRITE, so that figures and documents may be created during a modelling
session.

Figure 9.    Cutting and pasting graphs.  ShowFlow makes use of the Windows Clipboard to copy and
paste a graph into PAINTBRUSH.
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Figure 11.  Interpretation of the X Transect
graph.  This plots contaminant concentration
versus x for y = 0.

4.3 Interpretation of Results
The concentration value at a particular location can be determined by examining the

graph.  For example, for locations directly downgradient of the source, concentrations
can be read directly from the X Transect graph shown in Figure 11.  In this example, the
concentration at y = 0, x = 15 m, is 0.20 mg/L (or g/m3). 

For off-axis locations (y … 0), the user must interpolate using the Y Transects
and/or Concentration Contours graphs, shown in Figures 12 and 13.  For example, if
the location of interest is at x = 15 meters and y = 1.5 meters, there are two ways to find
the contaminant concentration.

Using the Y Transects graph, note that since the maximum value of x is 30 m, the
middle line represents the Y transect at x = 0.5(30 m) = 15 m.  This is the desired x
position.  From the graph, it is apparent that for this transect and y = 1.5 m, the
concentration is about 0.15 mg/L.

Alternatively, using the Concentration Contours in Figure 13, the point (15 m,
1.5 m) lies just outside the 30% contour, at about 28% of the maximum concentration.
This maximum occurs at the origin and can be read from either the X Transect or Y
Transects graphs as 0.53 mg/L.  28% of this maximum is 0.28(0.53 mg/L) = 0.15 mg/L. 



Chapter 4 Application of ShowFlow to SSGPLUME

42

Figure 12.  Interpretation of the Y Transects
graph.  This plots contaminant concentration
versus y at five evenly-spaced intervals along
x.

Figure 13.  Interpretation of the
Concentration Contours graph.  This plots
contaminant concentration over the xy plane,
with contour intervals at 10, 30, 50, 70, and 90
percent of the maximum concentration.
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Chapter 5
Conclusions and Recommendations

Conclusions
The principal goal of this research was to develop a productive interface for the

development and use of groundwater models.  As outlined in the introduction, the most
desirable qualities of this interface are that it should

•   provide an environment which is easy to use.
•   provide for unambiguous and error-free entry of model parameters.
•   have the ability to generate useful graphs of model output.
•   have the ability to transfer data and graphs to other media and programs.
•   be independent of the model program, so that the developer may modify the

model separately.
•   make efficient use of the computer's resources.
•   run on a widely-used platform.
•   provide adequate on-line help.
•   allow for quick comparison of simulation results.

As demonstrated in the preceding chapters and in the following User's Guide to
ShowFlow each of these objectives has been fully achieved.

Recommendations
The ShowFlow idea has a bright future.  Windows is rapidly becoming the primary

platform for new applications for IBM-type machines, and ShowFlow, though relatively
elementary in comparison, is in good company with sophisticated word processors,
spreadsheets, and analytical instrument interfaces.  As the availability of useful Windows
programs increases, so will the number of Windows users and hence the number of users
who will feel immediately at home with ShowFlow's interface.

The limitation of available memory has long been a problem for many software
developers, and every attempt was made to keep ShowFlow trimmed down to minimum
memory consumption.

However, as machines become upgraded with additional extended memory for use
by Windows, the old memory barriers will fall.  There are several enhancements to
ShowFlow which could be implemented as memory consumption becomes a less serious
limitation:
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•   ShowFlow could be modified to run several different models from the same
interface, each with its own Parameter File Editor screen.

•   The graphing utility could incorporate some user preferences for font style and
colors.

•   An interactive graph utility would be useful and fun, providing the user with a
way to choose the positions of transect graphs, or involving rotatable
projections of three-dimensional plume surfaces.

The children of ShowFlow may incorporate these and other enhancements, but such
programs will be memory-intensive and could not be used on most of today's installed
base of IBM-style computers.
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